Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid

نویسندگان

  • Manuela Porru
  • Silvia Zappavigna
  • Giuseppina Salzano
  • Amalia Luce
  • Antonella Stoppacciaro
  • Maria Luisa Balestrieri
  • Simona Artuso
  • Sara Lusa
  • Giuseppe De Rosa
  • Carlo Leonetti
  • Michele Caraglia
چکیده

Glioblastomas are highly aggressive adult brain tumors with poor clinical outcome. In the central nervous system (CNS) the blood-brain barrier (BBB) is the most important limiting factor for both development of new drugs and drug delivery. Here, we propose a new strategy to treat glioblastoma based on transferrin (Tf)-targeted self-assembled nanoparticles (NPs) incorporating zoledronic acid (ZOL) (NPs-ZOL-Tf). NPs-ZOL-Tf have been assessed on the glioblastoma cell line U373MG-LUC that showed a refractoriness in vitro to temozolomide (TMZ) and fotemustine (FTM). NPs-ZOL-Tf treatment resulted in higher in vitro cytotoxic activity than free ZOL. However, the potentiation of anti-proliferative activity of NPs-ZOL-Tf was superimposable to that one induced by NPs-ZOL (not armed with Tf). On the other hand, NPs-ZOL-Tf showed a higher antitumor efficacy if compared with that one caused by NPs-ZOL in immunosuppressed mice intramuscularly bearing U373MG-LUC xenografts, inducing a significant tumor weight inhibition (TWI). The experiments performed on mice with intracranial U373MG-LUC xenografts confirmed the efficacy of NPs-ZOL-Tf. These effects were paralleled by a higher intratumour localization of fluorescently-labeled-NPs-Tf both in intramuscular and intracranial xenografts. In conclusion, our results demonstrate that the encapsulation of ZOL increases the antitumor efficacy of this drug in glioblastoma through the acquisition of ability to cross the BBB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lomustine Loaded Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Treatment of Glioblastoma Multiforma (GBM)

This study aimed to improve delivery of lomustine as a chemotherapeutic agent and to increase its uptake by U87-MG cancer cells via synthesizes LN-FA-PG-SPIONs (lomustine loaded polyglycerol coated superparamagnetic iron oxide nanoparticles conjugated with folic acid). Nanoparticles were synthesized by thermal decomposition method and characterized using TEM (transmission microscope), FTIR (Fou...

متن کامل

Lomustine Loaded Superparamagnetic Iron Oxide Nanoparticles Conjugated with Folic Acid for Treatment of Glioblastoma Multiforma (GBM)

This study aimed to improve delivery of lomustine as a chemotherapeutic agent and to increase its uptake by U87-MG cancer cells via synthesizes LN-FA-PG-SPIONs (lomustine loaded polyglycerol coated superparamagnetic iron oxide nanoparticles conjugated with folic acid). Nanoparticles were synthesized by thermal decomposition method and characterized using TEM (transmission microscope), FTIR (Fou...

متن کامل

Formulation of temozolomide by folic acid-conjugated tri-block copolymer nanoparticles for targeted drug delivery

Introduction: Glioblastoma multiforme (GBM) is the most frequent primary malignant tumor of the brain. But, the treatment of GBM is one of the most problems in cancer therapy because of poor drug penetration across the blood-brain barrier (BBB). Targeting drug delivery system and conjugating targeting moieties was recognized to overcome the poor penetration of chemotherapy drug...

متن کامل

Transferrin-Targeted Nanoparticles Containing Zoledronic Acid as a Potential Tool to Inhibit Glioblastoma Growth.

The treatment of glioblastoma (GBM) is a challenge for the biomedical research since cures remain elusive. Its current therapy, consisted on surgery, radiotherapy, and concomitant chemotherapy with temozolomide (TMZ), is often uneffective. Here, we proposed the use of zoledronic acid (ZOL) as a potential agent for the treatment of GBM. Our group previously developed self-assembling nanoparticle...

متن کامل

Transferrin-Conjugated SNALPs Encapsulating 2′-O-Methylated miR-34a for the Treatment of Multiple Myeloma

Stable nucleic acid lipid vesicles (SNALPs) encapsulating miR-34a to treat multiple myeloma (MM) were developed. Wild type or completely 2'-O-methylated (OMet) MiR-34a was used in this study. Moreover, SNALPs were conjugated with transferrin (Tf) in order to target MM cells overexpressing transferrin receptors (TfRs). The type of miR-34a chemical backbone did not significantly affect the charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014